TU4.M1.1
Invited
SAR IMAGE RESTORATION: EXPLORING SIMILARITIES AND COMPLEMENTARITIES OF SUPERVISED AND SELF-SUPERVISED APPROACHES
Francescopaolo Sica, University of the Bundeswehr Munich, Germany
Session:
TU4.M1: SAR Image Restoration and Deep Learning: The Added Value of Artificial Intelligence in Handling Noise in Different SAR Image Configurations Oral
Track:
Community-Contributed Sessions
Location:
Mezzanine: Room M1
Presentation Time:
Tuesday, 5 August, 15:45 - 16:00
Session Co-Chairs:
Giampaolo Ferraioli, Università degli Studi di Napoli Parthenope and Sergio Vitale, University of Naples Parthenope
Presentation
Not logged in.
Not logged in.
Discussion
Not logged in.
Resources
No resources available.
Session TU4.M1
TU4.M1.1: SAR IMAGE RESTORATION: EXPLORING SIMILARITIES AND COMPLEMENTARITIES OF SUPERVISED AND SELF-SUPERVISED APPROACHES
Francescopaolo Sica, University of the Bundeswehr Munich, Germany
TU4.M1.2: A SELF-SUPERVISED ITERATIVE CONVOLUTIONAL NEURAL NETWORK FOR SAR IMAGE DESPECKLING
Lingdong Geng, Shuai Wang, Hongliang Lu, Xiping Yue, Wenjian Sun, Qilu Aerospace Information Research Institute, China; Jili Sun, Aerospace Information Research Institute, Chinese Academy of Science, China
TU4.M1.3: INCLUDING SAR ASSESSING METRICS IN DESPECKLING NETWORKS
Sergio Vitale, Giampaolo Ferraioli, Vito Pascazio, Università degli Studi di Napoli Parthenope, Italy; Luis Gomez Deniz, Universidad de Las Palmas de Gran Canaria, Spain
TU4.M1.4: SS - CFPNET: SAR IMAGE DESPECKLING FOR SAR IMAGES BASED ON CENTRED IMAGE FEATURE PYRAMIDS
Yiheng Zhou, Bing Sun, Mingqing Han, Yihang Zhi, Beihang University, China
TU4.M1.5: DEEP LEARNING FOR ENHANCING SENTINEL-1 IMAGERY
Juan Francisco Amieva, Christian Ayala, Tracasa Instrumental S.L., Spain; Mikel Galar, Universidad Pública de Navarra, Spain
Resources
No resources available.